Abietane Diterpenoids from the Cones of Larix kaempferi

Hironori Ohtsu, Reiko Tanaka,* and Shunyo Matsunaga
Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, J apan

Received April 21, 1998

Abstract

Three new abietane-type diterpenes, $7 \alpha, 15$-dihydroxyabieta-8,11,13-trien-18-al (1); 15,18-di hydroxyabieta-8,11,13-trien-7-one (2); and 18-nor-4,15-dihydroxyabieta-8,11,13-trien-7-one (3), were isolated from the cones of Larix kaempferi, together with three known diterpenes, abieta-8,11,13-trien-18-yl succinate, 16-nor-15-oxoabieta-8,11,13-trien-18-oic acid, and 7β-hydroxyabieta-8,11,13-trien-18-oic acid. The structures of 1-3 were determined on the basis of chemical and spectral evidence.

Recently, we reported the isolation of 18-nor-abieta-8,-11,13-triene-4,15-diol and 18-nor-abieta-8,11,13-triene$4,7 \alpha$-diol from the cones of Larix kaempferi (Lamb.) Carr. (Pinaceae), together with two known diterpenes, abieta-8,11,13-triene-15,18-diol and abieta-8,11,13-triene-7 $\alpha, 18$ diol. ${ }^{1}$

Further investigation of a CHCl_{3} extract of the fresh cones of L. kaempferi furnished three new compounds (13), together with three known compounds. The known compounds were identified as abieta-8,11,13-triene-18-yl succinate, ${ }^{2}$ 16-nor-15-oxoabieta-8,11,13-trien-18-oic acid, ${ }^{3}$ and 7β-hydroxyabieta-8,11,13-trien-18-oic acid ${ }^{4}$ by comparison of their physical, IR, ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, and EIMS data with those already published. Compound 5 was previously isolated from the leaves of L. kaempferi. ${ }^{3}$ We now report the characterization of 1-3.

Compound 1 was assigned the molecular formula $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}_{3}$, by HREIMS. Its IR spectrum indicated absorption bands for hydroxyl groups, an aldehyde group, and a benzene ring. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra (Tables 1 and 2) showed signals for two tertiary methyl groups, two equivalent methyls of a hydroxyisopropyl group, ${ }^{1}$ an aromatic ring characteristic for an abieta-8,11,13-triene, and an aldehyde group [$\delta_{H} 9.30(1 \mathrm{H}, \mathrm{s}) ; \delta_{\mathrm{C}} 206.2$ (d)]. AcetyIation of 1 afforded a monoacetate (1a). Except for the

[^0]

Figure 1. HMBC (plain arrow) and key NOESY (dashed arrow) interactions of compound 1.
absence of a carboxyl group at C-18 and the presence of an aldehyde group, close resemblances were observed in the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra with analogous data of the known compound $7 \alpha, 15$-dihydroxyabieta-8,11,13-trien-18oic acid. ${ }^{5}$ The HMBC spectrum of $\mathbf{1}$ provided cross correlations shown in Figure 1, indicating that an aldehyde group should be placed at C-4. The configuration of the C-7 hydroxyl group of 1 was determined as pseudoaxial 7α based on the ${ }^{13} \mathrm{C}$ NMR chemical shift values at C-5, C-6, $\mathrm{C}-7$, and $\mathrm{C}-14$ by comparison with those of 7β-hydroxya-bieta-8,11,13-trien-18-oic acid. ${ }^{4}$ The unambiguous structure of 1 was determined from NOESY correlations between $\mathrm{H}-19$ with $\mathrm{H}-20$, and the aldehyde proton with the $\mathrm{H}-3 \alpha$ and $\mathrm{H}-5 \alpha$ protons (Figure 1). Therefore, compound 1 was determined to be $7 \alpha, 15$-dihydroxyabieta-8,11,13-trien-18-al.
Compound 2 was also established with the molecular formula $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}_{3}$, by HREIMS. Its UV and IR spectra showed absorptions for hydroxyl groups, an α, β-unsaturated ketone, and a conjugated aromatic ring. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra (Tables 1 and 2) showed signals for two tertiary methyl groups, a hydroxyisopropyl group, a primary hydroxyl group, a ketone group, and an aromatic ring characteristic of an abieta-8,11,13-triene. Acetylation of 2 afforded a monoacetate (2a) and a less polar product, diacetate (2b), in the ratio 2:1. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data of 2 resembled those of abieta-8,11,13-triene15,18 -diol, ${ }^{1}$ except for the presence of a ketone group instead of a methylene group at C-7. This inference was supported by ${ }^{1} \mathrm{H}{ }^{-1} \mathrm{H}$ COSY, HMQC, HMBC, and NOESY experiments. The HMBC and NOESY data are shown in Figure 2. Therefore, compound $\mathbf{2}$ could be represented as 15,18-di hydroxyabieta-8,11,13-trien-7-one.
Compound 3 was assigned the molecular formula $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{3}$, by HREIMS. The UV and IR spectra indicated absorptions for hydroxyl groups, an α, β-unsaturated ke-

Table 1. ${ }^{1} \mathrm{H}$ NMR Spectral Data of Compounds $\mathbf{1}, \mathbf{1 a}, \mathbf{2}, \mathbf{2 a}, \mathbf{2 b}$, and $\mathbf{3}$ in $\mathrm{CDCl}_{3}{ }^{\mathrm{a}}$

proton	1	1a	2	2a	2b	3
H-1 α	1.49, m	1.50, m	1.53, m	$\begin{aligned} & 1.57, \operatorname{ddd}(13.3, \\ & 13.3,4.0) \end{aligned}$	$\begin{aligned} & 1.56 \text {, ddd (13.0, } \\ & 13.0,4.0) \end{aligned}$	1.57, m
H-1 β	$\begin{aligned} & \text { 2.35, ddd (13.0, } \\ & 3.5,3.5) \end{aligned}$	$\begin{aligned} & \text { 2.37. ddd (13.0, } \\ & 3.5,3.5) \end{aligned}$	$\begin{aligned} & \text { 2.33, ddd (13.0, } \\ & 3.5,3.5) \end{aligned}$	$\begin{aligned} & \text { 2.37, ddd (13.0, } \\ & 3.5,3.5) \end{aligned}$	$\begin{aligned} & 2.34, \operatorname{ddd}(13.0, \\ & 3.5,3.5) \end{aligned}$	2.33, ddd (12.5, 2.5, 2.5)
H-2 ${ }^{\text {a }}$	1.84, m	1.84, m	1.76, m	1.78, m	1.77, m	1.85, d quintet (13.5, 3.0)
H-2 β	1.84, m	1.84, m	1.81, m	1.83, m	1.82, m	$\begin{aligned} & 1.69 \text {, dddt }(13.5,13.5 \text {, } \\ & 13.5,3.0) \end{aligned}$
H-3 α	$\begin{aligned} & 1.51, \text { ddd (13.5, } \\ & 13.5,5.0) \end{aligned}$	1.48, m	$\begin{aligned} & \text { 1.59, ddd (13.3, } \\ & 13.3,3.8) \end{aligned}$	1.47, m	1.46, m	1.45, ddd (13.5, 13.5, 3.0)
H-3 β	$\begin{gathered} 1.38, \mathrm{dt}(13.5, \\ 3.0,3.0) \end{gathered}$	$\begin{aligned} & \text { 1.40, ddd (13.5, } \\ & 3.0,3.0) \end{aligned}$	$\begin{aligned} & 1.38 \text {, ddd (13.3, } \\ & 3.8,3.8) \end{aligned}$	1.47, m	1.46, m	1.93, ddd (13.5, 3.0, 3.0)
H-5 α	2.34, dd (13.0, 2.0)	2.34, dd (13.0, 2.0)	2.26, dd (12.7, 5.3)	2.21, dd (10.8, 7.0)	2.23, dd (10.8, 7.5)	2.13, dd (14.5, 4.0)
H-6 α	1.46, m	1.52, m	2.65, m	2.68, m	2.66, m	3.00 , dd (18.0, 4.0)
H-6 β	2.06, m	$\begin{aligned} & \text { 2.08, ddd (14.0, } \\ & 13.0,4.3) \end{aligned}$	2.65, m	2.68, m	2.66, m	2.63 , dd (18.0, 14.5)
H-7 β	4.79, dd (4.5, 1.5)	5.97, dd (4.3, 1.5)				
H-11	7.26, d (8.5)	7.30, d (8.5)	7.34, d (8.5)	7.38, d (8.5)	7.35, d (8.5)	7.36, d (8.5)
H-12	7.38, dd (8.5, 2.0)	7.44, dd (8.5, 2.0)	7.68, dd (8.5, 2.0)	7.75, dd (8.5, 2.0)	7.52, dd (8.5, 2.0)	7.73, dd (8.5, 2.0)
$\mathrm{H}-14$ $\mathrm{H}-15$	7.46, d (2.0)	7.34, d (2.0)	7.99, d (2.0)	8.08, d (2.0)	7.98, d (2.0)	8.08, d (2.0)
H-16	1.57, s	1.56, s	1.54, s	1.59, s	1.76, s	1.58, s
H-17	1.58, s	1.56, s	1.55, s	1.66, s	1.77, s	1.59, s
H-18	9.30, s	9.27, s	3.13, d (11.5)	3.74, d (11.5)	3.73, d (11.5)	
			3.46, d (11.5)	3.84, d (11.5)	3.83, d (11.5)	
H-19	1.17, s	1.17, s	0.93, s	$1.03, \mathrm{~s}$	1.02, s	1.30, s
H-20	1.19, s	1.21, s	1.25, s	1.28, s	1.26, s	1.21, s
C(15)OCOMe					2.05, s	
$\mathrm{C}(18) \mathrm{OCOMe}$		2.08, s		2.02, s	2.04, s	

${ }^{\text {a }}$ Values were recorded at 500 MHz , δ in ppm, J (in parentheses) in Hz; assignments from ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY, HMQC, HMBC, and NOESY data.

Table 2. ${ }^{13} \mathrm{C}$ NMR Spectral Data of Compounds 1, 1a, 2, 2a,
2b, $\mathbf{3}\left(\mathrm{CDCl}_{3}\right)^{\text {a }}$

carbon	$\mathbf{1}$	$\mathbf{1 a}$	$\mathbf{2}$	$\mathbf{2 a}$	$\mathbf{2 b}$	$\mathbf{3}$
1	37.5 t	37.4 t	37.5 t	37.3 t	37.3 t	37.2 t
2	17.8 t	17.7 t	18.2 t	18.0 t	18.0 t	20.1 t
3	31.9 t	32.0 t	34.7 t	35.2 t	35.2 t	42.5 t
4	49.2 s	49.1 s	37.7 s	37.7 s	37.7 s	71.5 s
5	37.3 d	38.1 d	42.2 d	43.2 d	42.8 d	50.9 d
6	30.9 t	28.3 t	35.9 t	36.0 t	35.9 t	35.0 t
7	67.8 d	70.1 d	199.8 s	198.8 s	198.6 s	198.9 s
8	135.7 s	131.8 s	130.4 s	130.4 s	130.6 s	130.4 s
9	147.1 s	147.9 s	154.5 s	154.2 s	154.2 s	153.5 s
10	36.7 s	36.6 s	37.6 s	36.6 s	36.5 s	38.6 s
11	124.3 d	124.4 d	123.7 d	123.7 d	123.7 d	124.0 d
12	124.9 d	125.4 d	130.6 d	130.6 d	130.1 d	130.6 d
13	147.0 s	147.2 s	147.1 s	147.2 s	144.0 s	147.2 s
14	126.0 d	126.4 d	122.9 d	123.1 d	123.1 d	123.1 d
15	72.3 s	72.2 s	72.2 s	72.3 s	81.0 s	72.2 s
16	31.6 q	31.6 q	31.5 q	31.6 q	28.5 q	31.6 q
17	31.7 q	31.7 q	31.5 q	31.7 q	28.7 q	31.6 q
18	206.2 d	205.6 d	70.6 t	71.6 t	71.4 t	
19	14.0 q	14.1 q	17.3 q	17.3 q	17.3 q	22.7 q
20	24.3 q	24.3 q	23.8 q	23.9 q	23.9 q	22.7 q
C(15)OCOMe					22.3 q	
C(15)OCOMe			21.5 q		20.9 q	21.0 q
C(18)OCOMe						
C(18)OCOMe		170.5 s		171.0 s	171.1 s	

[^1]tone, and a conjugated aromatic ring. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C} \mathrm{NMR}$ spectra (Tables 1 and 2) showed signals for two tertiary methyl groups, a hydroxyisopropyl group, a tertiary hydroxyl group, and an aromatic ring characteristic of an abieta-8,11,13-triene. Comparing the ${ }^{13} \mathrm{C}$ NMR data of 3 with that of $\mathbf{2}$, compound $\mathbf{3}$ shows a signal attributed to a quaternary oxygenated carbon [$\delta_{\mathrm{C}} 71.5$ (s)], while the C-18 signal of 2 [$\delta_{\mathrm{c}} 70.6(\mathrm{t})$] was absent. Together with the molecular ion at m/z 302.1889 in EIMS, these data suggested that compound $\mathbf{3}$ was a new norabietatriene. The HMBC spectrum of $\mathbf{3}$ exhibited the cross correlations shown in Figure 3, indicating that two hydroxyl groups should be placed at C-4 and C-15, and a ketone group at C-7. In the NOESY spectrum (Figure 3), a significant

Figure 2. HMBC (plain arrow) and key NOESY (dashed arrow) interactions of compound $\mathbf{2}$.

Figure 3. HMBC (plain arrow) and key NOESY (dashed arrow) interactions of compound 3.
correlation was observed between the signals of H-20 and H-19 geminal to a hydroxyl group, indi cative of a 1,3-diaxial relationship. Thus, compound $\mathbf{3}$ was characterized as 18-nor-4,15-dihydroxyabieta-8,11,13-trien-7-one.

Compounds 1-3 have not yet been reported in the literature. Although the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data of compound $\mathbf{2 a}$ have been reported, ${ }^{6}$ some differences in the ${ }^{13} \mathrm{C}$ NMR assignments were observed in the present study (Table 2).

Experimental Section

General Experimental Procedures. Melting points were determined on a Yanagimoto micromelting-point apparatus and are uncorrected. Optical rotations were measured using a JASCO DIP-1000 digital polarimeter. UV spectra were recorded on a Hitachi 150-20 spectrophotometer, and IR spectra were recorded using a Perkin-Elmer 1720X FTIR spectrophotometer. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were obtained on Varian XL-300 and INOVA 500 spectrometers with standard pulse sequences, operating at 300 and 500 MHz , and 74.5 and 125 MHz , respectively. CDCl_{3} was used as sol vent and TMS as internal standard. EIMS and HREIMS were recorded on a Hitachi 4000 H double-focusing mass spectrometer (70 eV). Column chromatography was carried out over Si gel (70-230 mesh, Merck) and Cosmocil $75 \mathrm{C}_{18}$-OPN (ODS, Nacarai Tesque), and MPLC was carried out with Si gel (230-400 mesh, Merck) and Cosmocil $40 \mathrm{C}_{18}-$ PREP (ODS, Nacarai Tesque). Preparative HPLC was carried out using a TOSOHsystem equipped with a CCPM-prep pump, a SC-8020 system controller, and a TSK-GEL ODS-80Ts (21.5 $\times 300 \mathrm{~mm}$) column. Fractions obtained from column chromatography were monitored by TLC (Si gel $60 \mathrm{HF}_{254}$). Preparative TLC was carried out on Merck Si gel PF $_{254}$ plates $(20 \times 20 \mathrm{~cm}, 0.5$ mm thick).

Isolation of Compounds. Preliminary Si gel column chromatography of the CHCl_{3} extract of the fresh cones of L . kaempferi has been reported previously, with separation into 10 fractions. ${ }^{1}$ Rechromatography of fraction $8(9.87 \mathrm{~g})$, eluted with $\mathrm{CHCl}_{3}-$ EtOAc (2:1) from the preliminary Si gel column chromatography, over Si gel (200 g) with a solvent gradient from n-hexane-EtOAc (4:1) to 100\% EtOAc afforded fractions $\mathbf{a}-\mathbf{k}$. Rechromatography of fraction $\mathbf{f}(169 \mathrm{mg})$, eluted from n-hexane-EtOAc (2:1), over ODS column with $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$ (3:1) furnished 7β-hydroxyabieta-8,11,13-trien-18-oic acid, 39 $\mathrm{mg},[\alpha]^{23} \mathrm{D}+21^{\circ}(\mathrm{c} 0.41$, EtOH $){ }^{4}$ Fraction $\mathbf{g}(1.65 \mathrm{~g})$, obtained from n-hexane-EtOAc (1:1), was repeatedly purified by ODS column chromatography with $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$ (4:1) to give successively compound $\mathbf{2}$ (120 mg) and compound $\mathbf{1}$ (8 mg). Rechromatography of fraction \mathbf{h} (241 mg), obtained from n -hexane-EtOAc (1:1), was purified using MPLC (ODS) with $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}(4: 1)$, and HPLC with $\mathrm{MeCN}-\mathrm{H}_{2} \mathrm{O}(7: 3)$ furnished compound 3 (20 mg).

Fraction $\mathbf{F}(2.17 \mathrm{~g})$, collected from the early fractions in the rechromatography of fraction 9, was subjected to MPLC (Si gel). Elution with n-hexane-EtOAc (3:1) successively afforded two gummy residues from fractions $13-28(\mathbf{F - 1}, 338 \mathrm{mg})$ and 29-48 (F-2, 195 mg), respectively. Rechromatography of F-1 over an ODS column with $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$ (4:1) furnished crude 16-nor-15-oxoabieta-8,11,13-trien-18-oic acid (12 mg), which was methylated by diazomethane etherate to afford a methyl ester (6 mg), identical in all respects with an authentic sample. ${ }^{3}$ Fraction $\mathbf{F}-2$ was also purified using an ODS column. Elution with $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$ (4:1) of the column furnished abieta-$8,11,13$-trien- 18 -yl succinate, $20 \mathrm{mg},[\alpha]^{23} \mathrm{D}+32^{\circ}\left(\mathrm{c} 1.0, \mathrm{CHCl}_{3}\right.$). ${ }^{2}$

7 $\alpha, 15$-Dihydroxyabieta-8,11,13-trien-18-al (1): col orless oil; $[\alpha]^{23}{ }_{D}-17^{\circ}\left(\mathrm{c} 0.21, \mathrm{CHCl}_{3}\right) ;$ IR (film) $v_{\max } 3380(\mathrm{OH}), 2971$, 2931, 1717 (-CHO), 1498 and 1456 (aromatic ring) $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, see Tables 1 and 2; EIMS (70 eV) m/z $316[\mathrm{M}]^{+}$ (12), $301[\mathrm{M}-\mathrm{Me}]^{+}$(100), $298\left[\mathrm{M} \mathrm{-} \mathrm{H}_{2} \mathrm{O}\right]^{+}$(36), 280 [M $\left.2 \mathrm{H}_{2} \mathrm{O}\right]^{+}$(9), 269 (16), 265 (15), 195 (20), 155 (14), 59 (12); HREIMS m/z 316.2044 (calcd for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}_{3}, 316.2037$).

Acetylation of Compound 1. A mixture of compound 1 $(2 \mathrm{mg})$ in dried pyridine $-\mathrm{Ac}_{2} \mathrm{O}(1: 1,1 \mathrm{~mL})$ was left at room
temperature overnight. Workup as usual yielded a residue (3 mg), which was purified by preparative TLC (n -hexaneEtOAc, 3:1) to furnish a monoacetate (1a), 1.8 mg , as a col orless oil: $[\alpha]^{23} \mathrm{D}+21^{\circ}$ (c $0.20, \mathrm{CHCl}_{3}$); IR (film) $v_{\text {max }} 3445$ (OH), 2920, 2850, 1731 and 1238 (OAc), 1718 (-CHO), 1504 and 1463 (aromatic ring) cm^{-1}; ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, see Tables 1 and 2; EIMS (70 eV) m/z 358 [M] ${ }^{+}$(0.5), 340 (3), 316 (5), 298 (100), 286 (13), 255 (24), 173 (23), 155 (27), 141 (17), 59 (27), 43 (49); HREIMS m/z 358.2142 (cal cd for $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{O}_{4}, 358.2142$).

15,18-Dihydroxyabieta-8,11,13-trien-7-one (2): viscous oil; $[\alpha]^{23} \mathrm{D}-11^{\circ}$ (c 1.38, CHCl_{3}); UV (EtOH) $\lambda_{\text {max }}(\log \epsilon) 253$ (3.96) and 299 (3.26) nm; IR (film) $v_{\max } 3408(\mathrm{OH}), 2972,2932$, 1668 (aryl C=O), 1497 and 1457 (aromatic ring), 1149, 983, $858 \mathrm{~cm}^{-1}{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, see Tables 1 and 2; EIMS (70 eV) $\mathrm{m} / \mathrm{z} 316[\mathrm{M}]^{+}$(6), $301[\mathrm{M}-\mathrm{Me}]^{+}$(100), 283 [M - Me - H2O] ${ }^{+}$ (7), 203 (19), 187 (6), 115 (4), 43 (15); HREIMS m/z 316.2044 (calcd for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}_{3}, 316.2037$).

Acetylation of Compound 2. A mixture of compound 2 $(20 \mathrm{mg})$ and dried pyridine-Acz $\mathrm{O}(1: 1,2 \mathrm{~mL})$ was left at room temperature overnight. The reaction mixture was evaporated under reduced pressure to give a residue (23 mg), which showed two spots on TLC (n-hexane-EtOAc, 3:1). Si gel col umn chromatography of the residue yielded a monoacetate (2a), 12 mg , as a viscous oil: $[\alpha]^{23} \mathrm{D}-12^{\circ}$ (c $1.06, \mathrm{CHCl}_{3}$); IR (film) $\nu_{\max } 3463$ (OH), 2971, 2934, 1739 and 1238 (OAc), 1681 (aryl C=O), 1607, 1491 and 1459 (aromatic ring) $\mathrm{cm}^{-1} ;^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, see Tables 1 and 2; EIMS (70 eV) m/z 358 [M] ${ }^{+}$(10), 343 [M - Me] ${ }^{+}$(100), 298 (15), 283 (45), 265 (24), 203 (24), 187 (78); HREIMS m/z 358.2150 (calcd for $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{O}_{4}, 358.2142$), and a diacetate (2b), 6 mg , as a viscous oil: $[\alpha]^{23} \mathrm{D}-40^{\circ}$ (c 0.46, CHCl_{3}); IR (film) $\nu_{\text {max }} 2935,1737$ and 1241 (OAc), 1683 (aryl $\mathrm{C}=\mathrm{O}$), 1610, 1492 and 1466 (aromatic ring) $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, see Tables 1 and 2; EIMS (70 eV) m/z 400 [M] ${ }^{+}$(10), 357 (41), 341 (97), 325 (39), 280 (44), 265 (72), 245 (24), 185 (29), 43 (100); HREIMS m/z 400.2250 (calcd for $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{O}_{5}$, 400.2248).

18-nor-4,15-Dihydroxyabieta-8,11,13-trien-7-one (3): viscous oil; $[\alpha]^{23}{ }_{\mathrm{D}}+6^{\circ}\left(\mathrm{c} 1.2, \mathrm{CHCl}_{3}\right)$; UV (EtOH) $\lambda_{\text {max }}(\log \epsilon) 253$ (3.94) and 297 (3.31) nm; IR (film) $v_{\text {max }} 3417$ (OH), 2973, 2934, 1673 (aryl C=0), 1607, 1490 and 1457 (aromatic ring) cm^{-1}; ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, see Tables 1 and 2; EIMS (70 eV) m/z 302 $[M]^{+}(5), 287[M-M e]^{+}(100), 269\left[M-M e-\mathrm{H}_{2} \mathrm{O}\right]^{+}(6), 241$ (5), 199 (12), 171 (5), 43 (14); HREIMS m/z 302.1889 (calcd for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{3}, 302.1881$).

Acknowledgment. The authors are grateful to Mr. K. Minoura and Mrs. M. Fujitake, Osaka University of Pharmaceutical Sciences, for NMR and MS measurements.

References and Notes

(1) Ohtsu, H.; Tanaka, R.; Matsunaga, S. J. Nat. Prod. 1998, 61, 406408.
(2) Raldugin, V. A.; Demenkova, L. I.; Pentegova, V. A. Khim. Prir. Soedin. 1990, 5, 698-699.
(3) Tanaka, R.; Ohtsu, H.; M atsunaga, S. Phytochemistry 1997, 46, 10511057.
(4) Ohmoto, T.; Saito, M.; Yamaguchi, K. Chem. Pharm. Bull. 1987, 35, 2443-2447.
(5) Ohmoto, T.; Kanatani, K.; Yamaguchi, K. Chem. Pharm. Bull. 1987, 35, 229-234.
(6) J urgens, A. R.; McChesney J. D. Magn. Reson. Chem. 1990, 28, 181-184.

NP980159D

[^0]: * To whom correspondence should be addressed. Tel. and Fax: +81 726-90-1084. E-mail: tanakar@oysun01.oups.ac.jp.

[^1]: a Values were recorded at $125 \mathrm{MHz}, \delta$ in ppm; assignments from DEPT, HMQC, and HMBC experiments.

